
A Survey of File Systems and File Access
Systems

R.Prathyusha1, G.Praveen Babu2

1M.Tech.(Comp.Networks & Info.Security) Student, School of IT, JNTUH, India
2 Associate Professor of CSE, School of IT, JNTUH, India,

I. INTRODUCTION
Remote access file systems enable an application that runs
on a client computer to access files stored on a different
computer. Remote file systems also often make other
resources (remote printers, for example) accessible from a
client computer. The remote file and resource access takes
place using some form of Local Area Network (LAN), Wide
Area Network (WAN), point-to-point link, or other
communication mechanism. These file systems are often
referred as network file systems. The components that make
a files access system include file systems, file access
protocol used to access the remote file system and an
identity provider that contains the identities of all the clients
accessing the file system.
This paper is a survey of the current state of the art in the
design of file systems and file access protocols. It consists
of four major parts: a brief survey of essential features of
file systems, file access protocols and case studies of a
number of contemporary remote file systems.

II. ESSENTAIL FEATURES OF FILE SYSTEMS
A. Space-Management
Space Management is one of the essential features of file
system. File systems allocate space in a granular manner,
usually multiple physical units on the device. The file
system is responsible for organizing files and directories,
and keeping track of which areas of the media belong to
which file and which are not being used. File system
fragmentation occurs when unused space or single files are
not contiguous. As a file system is used, files are created,
modified and deleted. When a file is created the file system
allocates space for the data. Some file systems permit or
require specifying an initial space allocation and subsequent
incremental allocations as the file grows. As files are
deleted the space that was allocated, eventually is
considered available for use by other files. This creates
alternating of used and unused areas of various sizes. This is
free space fragmentation. When a file is created and there is
not an area of contiguous space available for its initial
allocation, the space must be assigned in fragments. When a
file is modified such that it becomes larger, it may exceed
the space initially allocated to it, another allocation must be
assigned elsewhere and the file becomes fragmented.

B. Integrity
One significant responsibility of a file system is to ensure
that, regardless of the actions by programs accessing the
data, the structure remains consistent. This includes actions
taken if a program modifying data terminates abnormally or

neglects to inform the file system that it has completed its
activities. This may include updating the metadata, the
directory entry and handling any data that was buffered but
not yet updated on the physical storage media. Other
failures which the file system must deal with include media
failures or loss of connection to remote systems. In the
event of an operating system failure or "soft" power failure,
special routines in the file system must be invoked similar to
when an individual program fails. The file system must also
be able to correct damaged structures. These may occur as a
result of an operating system failure for which the OS was
unable to notify the file system, power failure or reset. The
file system must also record events to allow analysis of
systemic issues as well as problems with specific files or
directories.

C. MetaData
The length of the data contained in a file may be stored as
the number of blocks allocated for the file or as a byte
count. The time that the file was last modified may be
stored as the file's timestamp. File systems might store the
file creation time, the time it was last accessed, the time the
file's metadata was changed, or the time the file was last
backed up. Other information can include the file's device
type (e.g. block, character, socket, subdirectory, etc.), its
owner user ID and group ID, its access permissions and
other file attributes (e.g. whether the file is read-only,
executable,
A file system stores all the metadata associated with the
file—including the file name, the length of the contents of a
file, and the location of the file in the folder hierarchy—
separate from the contents of the file.
Most file systems store the names of all the files in one
directory in one place—the directory table for that
directory—which is often stored like any other file.

D. Access Based Enumeration
Access-based enumeration displays only the files and
folders that a user has permissions to access. It is a feature
that was previously available as a downloadable package
for the Windows Server® 2003 operating system (it was
also included in Windows Server 2003 Service Pack 1).
Access-based enumeration is now included in the Windows
Server 2008 operating system, and you can enable it by
using Share and Storage Management.There are several
mechanisms used by file systems to control access to data.
Usually the intent is to prevent reading or modifying files
by a user or group of users. Another reason is to ensure
data is modified in a controlled way so access may be

R.Prathyusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6193-6197

www.ijcsit.com 6193

restricted to a specific program. Examples include
passwords stored in the metadata of the file or elsewhere
and file permissions in the form of permission bits, access
control lists, or capabilities. The need for file system
utilities to be able to access the data at the media level to
reorganize the structures and provide efficient backup
usually means that these are only effective for polite users
but are not effective against intruders.
E. Special features:
Each file system has some special features which are
characteristic to it, which this paper describes and higlights
as part of essential features itself.

III. ESSENTIAL FEATURES OF FILE ACCESS

SYSTEMS
A. Transparency
The distributed systems should be perceived as a single
entity by the users or the application programmers rather
than as a collection of autonomous systems, which are
cooperating. The users should be unaware of where the
services are located and also the transferring from a local
machine to a remote one should also be transparent. Some
of the different transparencies include Access Transparency,
Location Transparency, Concurrency Transparency,
Replication Transparency.

B. User Mobility
A user can walk to any workstation in the system and
access any file in the shared name space. A user’s
workstation is personal only in the sense that he owns it.
The file system must be independent of Client Operating
System i.e. should support different network protocols that
can be used for different clients. In addition it must support
different types of Client devices.

C. Performance
Performance is measured as the average amount of time
needed to satisfy client requests. This time includes CPU
time + time for accessing secondary storage + network
access time. It is desirable that the performance of a
distributed file system be comparable to that of a
centralized file system. The following methodologies
increase the performance of the remote file system include
Server Caching, Client Caching, and Multi-threading.

D. Security
Secure Authentication where the server and client
interacting identify and trust each other that either of them
are legitimate entities. There are a number of authentication
methods like Shared Secret, OTP (One Time Password),
Certificates, etc.
After a secure authentication session is established, the
server and client exchange messages with a shared cipher
that is agreed between the client and server during the
Authentication session.

E. Visibility
Visibility is an essential file system feature by which the
users will not know the existence of other files and folders
inside a directory unless they are authorized to access them.

For example, if there is a directory dir1 and there are
folders user1 and user2 to which user1 and user2 have
respectively access to, then when a user1 accesses dir1
through his client, he will be able to see only user1 and not
user2.Similar is the case for user2 folder. This is a rare
feature that is not implemented by all file systems.

IV. A STUDY OF FILE SYSTEMS
A. Ext4
 1. Space Management: The ext4 file system can support
volumes with sizes up to 1 exbibyte (EiB) and files with
sizes up to 16 tebibytes (TiB). Delayed allocation is a
performance feature (it doesn't change the disk format)
found in a few modern filesystem and it consists in
delaying the allocation of blocks as much as possible,
contrary to what traditionally filesystems (such as Ext3,
reiser3, etc) do: allocate the blocks as soon as
possibleDelayed allocation, does not allocate the blocks
immediately when the process write()s, rather, it delays the
allocation of the blocks while the file is kept in cache, until
it is really going to be written to the disk. This gives the
block allocator the opportunity to optimize the allocation in
situations where the old system couldn't. Delayed
allocation plays very nicely with the two previous features
mentioned, extents and multiblock allocation, because in
many workloads when the file is written finally to the disk
it will be allocated in extents whose block allocation is
done with the malloc allocator. The performance is much
better, and the fragmentation is much improved in some
workloads.
 2. Integrity: The journal is the most used part of the disk,
making the blocks that form part of it more prone to
hardware failure. And recovering from a corrupted journal
can lead to massive corruption. Ext4 checksums the journal
data to know if the journal blocks are failing or corrupted.
But journal checksumming has a bonus: it allows one to
convert the two-phase commit system of Ext3's journaling
to a single phase, speeding the filesystem operation up to
20% in some cases - so reliability and performance are
improved at the same time. (Note: the part of the feature
that improves the performance, the asynchronous logging,
is turned off by default for now, and will be enabled in
future releases, when its reliability improves. Jourrnaling
ensures the integrity of the file system by keeping a log of
the ongoing disk changes. However, it is known to have a
small overhead. Some people with special requirements and
workloads can run without a journal and its integrity
advantages. In Ext4 the journaling feature can be disabled,
which provides a small performance improvement.
Write Barriers, a new feature, ensures that file system
integrity even when power is lost to a device with write
caches enabled.
3. Metadata: Timestamps in the extended file system arena
prior to ext4 were seconds based. This was satisfactory in
many settings, but as processors evolve with higher speeds
and greater integration (multi-core processors) and Linux
finds itself in other application domains such as high-
performance computing, the seconds-based timestamp fails
in its own simplicity. Ext4 has essentially future-proofed
timestamps by extending them into a nanosecond LSB. The

R.Prathyusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6193-6197

www.ijcsit.com 6194

time range has also be extended with two additional bits to
increase the lifetime by another 500 years.
3. Access Based Enumeration - This feature is not
implemented in ext4 file system.
B. BrtFS

1. Space Management: BrtFS supports up to 16EiB. It
supports a unique feature called Copy-on write to reduce
the space allocation of a resource that is used by multiple
processes. Copy-on-write (sometimes referred to as
"COW") is an optimization strategy used in computer
programming. Copy-on-write stems from the
understanding that when multiple separate tasks use
identical copies of the same information (i.e., data stored
in computer memory or disk storage), it is not necessary
to create separate copies of that information for each
process, instead they can all be given pointers to the
same resource. When there are many separate processes
all using the same resource it is possible to make
significant resource savings by sharing resources this
way. However, when a local copy has been modified, the
copy-on-write paradigm has no provision that the shared
resource has in the meantime not been updated by
another task or tasks. Copy-on-write is therefore
amenable if only the latest update is important and
occasional use of a slightly stale value is not harmful.
2. Integrity: Integrity in BrtFS is achieved through a
number of methods like Checksums on data and
metadata, Online data scrubbing for finding errors and
automatically fixing them for files with redundant copies
and Snapshots. BTRFS's snapshotting capability is to
atomically freeze changes to a subvolume, and then
transfer these snapshots to a backup volume. The atomic
freezing provided by BTRFS should allow
transactionally operating systems such as database files
and raw file system images to be repairable to a
consistent state from a snapshot. When performing
incremental backups, we will be working with two
snapshots, one of them representing the time of the
earlier backup, and the other representing the current
backup. When the backup run completes, we can discard
the earlier of the snapshots to prepare for the next
incremental run.
3. Metadata-Timestamps in the extended file system
arena prior to ext4 were seconds based. BrtFS has
essentially future-proofed timestamps by extending them
into a nanosecond LSB. The time range has also be
extended with two additional bits to increase the lifetime
by another 500 years.
 4. Access-Based Enumeration-This feature is not
implemented in BrtFS file system.

C. ReFS
1. Space Management - ReFS is designed to work well
with extremely large data sets — petabytes and larger —
without performance impact. ReFS is not only designed
to support volume sizes of 2^64 bytes (allowed by
Windows stack addresses), but ReFS is also designed to
support even larger volume sizes of up to 2^78 bytes
using 16 KB cluster sizes. This format also supports
2^64-1 byte file sizes, 2^64 files in a directory, and the
same number of directories in a volume. The first new

concept for storage management in Windows Server
2012 is to Storage Pool: a disk group, even of different
types of them that, once collected in a pool, they are
“virtualized” and made available as a unique resource for
the creation of a Storage Space accessible by the
system.The Storage Pool once created can be extended
by adding additional disks, thus extending the potential
size of the Storage Spaces that use it.
2. Integrity: ReFS stores data in a way that protects it
from many of the common errors that can normally cause
data loss. When ReFS is used in conjunction with a
mirror space or a parity space, detected corruption—both
metadata and user data, when integrity streams are
enabled—can be automatically repaired using the
alternate copy provided by Storage Spaces. In addition,
there are Windows PowerShell cmdlets (Get-
FileIntegrity and Set-FileIntegrity) that you can use to
manage the integrity and disk scrubbing policies.
3. MetaData-A reliability mechanism that increases the
performance of ReFS is “integrity streams”. Just like
metadata, integrity streams will use allocate-on-write
semantics to reduce the chance that a failure while
writing to disk will result in corruption of the only good
copy of the file’s content. Integrity streams are not
appropriate for all types of files; applications that require
control over the physical file structure (e.g. databases)
should disable this feature.
4. Access Based Enumeration-ReFS provides access-
based enumeration but this feature is provided as
optional. So the end users can see only the files and
folders they have access to.

D. ZFS
1. Space Management : ZFS supports upto 16EB of
data.ZFS introduces a new concept called Zvols.These
are like special objects in a ZFS pool of storage and can
be very useful for storage virtualization because you can
snapshot them and present them to other systems as
block devices through protocols like iSCSI, FCoE/FC
and Infiniband when used with a SCSI target framework
like SCST or LIO. As a storage appliance / SDS software
developer, this is a really cool feature though it may not
be as important for general use case - 2. Integrity, Data
integrity is achieved by using a (Fletcher-based)
checksum or a (SHA-256) hash throughout the file
system tree. Each block of data is checksummed and the
checksum value is then saved in the pointer to that
block—rather than at the actual block itself. Next, the
block pointer is checksummed, with the value being
saved at its pointer. This checksumming continues all the
way up the file system's data hierarchy to the root node,
which is also checksummed, thus creating a Merkle tree
In-flight data corruption or phantom reads/writes (the
data written/read checksums correctly but is actually
wrong) are undetectable by most filesystems as they store
the checksum with the data. ZFS stores the checksum of
each block in its parent block pointer so the entire pool
self-validates.
3. Access Based Enumeration: This feature is not
supported by ZFS.

R.Prathyusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6193-6197

www.ijcsit.com 6195

V. A STUDY OF FILE ACCESS SYSTEMS
A. NFS - Network File System

1. Security - NFS v3, unlike the other file access
protocols, is an exported file system. This means
that access and security are enforced at the NFS
client, and not the NFS server. As a result, NFS is
easily hacked if not on a dedicated secure network.
NFS v3 is a stateless protocol like HTTP and FTP,
so suffers performance since it must assert current
state with each operation (for example, it does not
define Open and Close file, only Read and Write).
However NFSv4 has authentication mandated, but
is still not widely spread.

2. Transparency - NFS provides only Location
Transparency, i.e. the location of the known from
the file. But NFS does not provide Location
independence, i.e. the physical storage location
cannot be changed without changing the location of
the file.

3. User-Mobility - NFS can be used by all Unix-
operating system clients and some non-Unix
clients.

4. Performance - To improve the performance, NFS
systems use delayed write. But they don't free
delayed written block until the server confirms that
the data have been written on disk. So, here, Unix
semantics are not preserved. NFS does not handle
client crash recovery like Unix. Since, servers in
NFS are stateless; there is no need to handle server
crash recovery also. To improve the performance,
the NFS systems cache the file/directory attributes.
For large caches, bigger block-sizes are beneficial.

B. CIFS (Common Internet File System)
1. Security - CIFS provides security optionally like

NFS. CIFS servers support both anonymous
transfers and secure, authenticated access to named
files. File and directory security policies are easy to
administer. However, in data communication CIFS
does not provide encryption capabilities.

2. Transparency - CIFS provides location
transparency, i.e users do not have to mount remote
file systems, but can refer to them directly with
globally significant names (names that can be
located anywhere on the Internet), instead of ones
that have only local significance (on a local
computer or LAN). Distributed File Systems (DFS)
allows users to construct an enterprise-wide
namespace. Uniform Naming Convention (UNC)
file names are supported so a drive letter does not
need to be created before remote files can be
accessed.

3. User-Mobility - CIFS can be used only on windows
clients.

4. Performance - CIFS servers are highly integrated
with the operating system, and are tuned for
maximum system performance.

C. Lustre - Lustre is a unique distributed client server
protocol. It specifically breaks the functions of a file
system up at the protocol layer in order to gain huge
scalability for great numbers and very large files (like
seismic data for petroleum exploration).

1. Security - Lustre implements process authorizations
groups as they provide more security from root
setuid attacks, provided hardened kernels are used.
New features of Lustre are file encryption, careful
analysis of cross realm authentication and
authorization issues and file I/O authorization.
Lustre can also be configured to use
/etc/password,/etc/group in environments where
small clusters can be configured.

2. Transparency - Supports Linux Systems. Lustre
files can be re-exported using NFS or CIFS (via
Samba) enabling them to be shared with a non-
Linux client.

3. User-Mobilty - Lustre supports only Unix
Platforms.

4. Performance - There are few features which
increase the performance like a robust failover and
recovery mechanism, making server failures and
reboots transparent. Lustre uses a modified version
of the ext4 journaling file system to store data and
metadata. This version, called ldiskfs, has been
enhanced to improve performance and provide
additional functionality needed by Lustre. Version
interoperability between successive minor versions
of the Lustre software enables a server to be
upgraded by taking it offline (or failing it over to a
standby server), performing the upgrade, and
restarting it, while all active jobs continue to run,
experiencing a delay while the backup server takes
over the storage.

 D. AFS (Andrew File System)
1. Security - AFS uses Kerberos for authentication,
and implements access control lists on directories for
users and groups. Each client caches files on the local
file system for increased speed on subsequent
requests for the same file. This also allows limited file
system access in the event of a server crash or a
network outage.
2. Transparency - Users of the data are unaware of
the location of the read-only copy; administrators can
create and relocate such copies as needed. The AFS
command suite guarantees that all read-only volumes
contain exact copies of the original read-write volume
at the time the read-only copy was created.
4.3. Performance - Andrew file system is more
scalable when the file reads are 6 times greater than
file writes, files are referenced in bursts, and
sequential access is more common than random
access.
3. User-Mobility - Andrew File System supports
heterogeneous systems like Linux, Mac and Microsoft
Windows.

R.Prathyusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6193-6197

www.ijcsit.com 6196

VI. CONCLUSION
The above file systems and file access systems presented
are a brief study of what are the essential features required
for an ideal file system and file access systems.

REFERENCES
1. http://en.wikipedia.org/
2. http://www.lasr.cs.ucla.edu/classes/cs111_online.sprin

g13/readings/distributed_FS_survey.pdf
3. http://crystal.uta.edu/~kumar/cse6306/papers/mantena.

pdf
4. http://wiki.lustre.org/index.php/FAQ_-_OS_Support
5. http://www.unf.edu/~sahuja/cis6302/filesystems.html

R.Prathyusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6193-6197

www.ijcsit.com 6197

